Abstract

The flow of a bi-disperse polymer melt through a hyperbolic contraction is simulated using the recently proposed Rolie-Double-Poly constitutive model (Boudara et al., 2019). This simplified tube model takes account of the nonlinear coupling between the dynamics of the long and short-chains in a bi-disperse blend, in particular it reproduces the enhancement of the stretch relaxation time that arises from the coupling between constraint release and chain retraction. Flow calculations are performed by implementing both the Rolie-Double-Poly and multimode Rolie-Poly models in OpenFOAM using the RheolTool library. While both models predict very similar flow patterns, the enhanced stretch relaxation of the Rolie-Double-Pol models results in an increase in the molecular stretch of the long chain component in the pure extensional flow along the centre-line of the contraction, but a decrease in the stretch in shear-flow near the channel walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.