Abstract
Summary We introduce a semiparametric approach for modelling the effect of concurrent events on an outcome of interest. Concurrency manifests itself as temporal and spatial dependences. By temporal dependence we mean the effect of an event in the past. Modelling this effect is challenging since events arrive at irregularly spaced time intervals. For the spatial part we use an abstract notion of ‘feature space’ to conceptualize distances among a set of item features. We motivate our model in the context of on-line auctions by modelling the effect of concurrent auctions on an auction's price. Our concurrency model consists of three components: a transaction-related component that accounts for auction design and bidding competition, a spatial component that takes into account similarity between item features and a temporal component that accounts for recently closed auctions. To construct each of these we borrow ideas from spatial and mixed model methodology. The power of this model is illustrated on a large and diverse set of laptop auctions on eBay.com. We show that our model results in superior predictive performance compared with a set of competitor models. The model also allows for new insight into the factors that drive price in on-line auctions and their relationship to bidding competition, auction design, product variety and temporal learning effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.