Abstract

AbstractBACKGROUNDThe impact of concentration gradients in large industrial‐scale bioreactors on microbial physiology can be studied in scale‐down bioreactors. However, scale‐down systems pose several challenges in construction, operation and footprint. Therefore, it is challenging to implement them in emerging technologies for bioprocess development, such as in high throughput cultivation platforms. In this study, a mechanistic model of a two‐compartment scale‐down bioreactor is developed. Simulations from this model are then used as bases for a pulse‐based scale‐down bioreactor suitable for application in parallel cultivation systems.RESULTSAs an application, the pulse‐based system model was used to study the misincorporation of non‐canonical branched‐chain amino acids into recombinant pre‐proinsulin expressed in Escherichia coli, as a response to oscillations in glucose and dissolved oxygen concentrations. The results show significant accumulation of overflow metabolites, up to 18.3% loss in product yield and up to 10‐fold accumulation of the non‐canonical amino acids norvaline and norleucine in the product in the pulse‐based cultivation, compared with a reference cultivation.CONCLUSIONSResults indicate that the combination of a pulse‐based scale‐down approach with mechanistic models is a very suitable method to test strain robustness and physiological constraints at the early stages of bioprocess development. © 2018 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.