Abstract

The finite element method was used to analyse the cutting process of a sandy loam soil with medium-deep subsoiler, used as a compaction sensor, aiming to calculate the subsoiler draught for various combinations of dry bulk density, moisture content and tillage depth. The finite element results showed that draught increased with depth and dry bulk density, whereas it decreased with moisture content. A multiple linear regression analysis was performed to establish a formula for relating subsoiler draught (dependent variable) with the three independent variables. The regression equation developed was simple and had a high determination coefficient close to 0.95. An equation for prediction of dry bulk density as a function of moisture content, depth and draught was derived from the regression equation developed. This equation was used to calculate dry bulk density, for measured depth, moisture content and draught at nine different points along a single line in a meadow field of a silty clay loam soil. The predicted dry bulk density indicated that there was a considerable variation in the degree of compaction throughout the measured line. However, the on-line depth control and measurement of moisture content still need to be integrated with the on-line measurement of draught, to govern the model suitability for performing on-line detection of the spatial distribution of soil compaction, assessed as dry bulk density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call