Abstract

Biological cells require active fluxes of matter to maintain their internal organization and perform multiple tasks to live. In particular they rely on cytoskeletal transport driven by motor proteins, ATP-fueled molecular engines, for delivering vesicles and biochemically active cargoes inside the cytoplasm. Experimental progress allows nowadays quantitative studies describing intracellular transport phenomena down to the nanometric scale of single molecules. Theoretical approaches face the challenge of modelling the multiscale, out-of-equilibrium and non-linear properties of cytoskeletal transport: from the mechanochemical complexity of a single molecular motor up to the collective transport on cellular scales. We will present some of our recent progress in building a generic modelling scheme for cytoskeletal transport based on lattice gas models called “exclusion processes”. Interesting new properties arise from the emergence of density inhomogeneities of particles along the network of one dimensional lattices. Moreover, understanding these processes on networks can provide important hints for other fundamental and applied problems such as vehicular, pedestrian and data traffic, or ultimately for technological and biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.