Abstract

Abstract The purpose of this article is to present a model of the formation processes of cockpit karst landscapes. The CHILD software was used to simulate landscape evolution including dissolution processes of carbonate rocks. After examining briefly how the CHILD model operates, two applications of this model involving dissolution of carbonate rocks are presented. The simulated landscapes are compared with real landscapes of the Cockpit Country, Jamaica, using morphometric criteria. The first application is based on the hypothesis that dissolution of carbonate rocks is isotropic over time and space. In this case, dissolution is constant throughout the whole area studied and for each time step. The simulated landscapes based on this hypothesis have morphometric features which are quite different from those of real landscapes. The second application considers that dissolution of carbonate rocks is anisotropic over time and space. In this case, it is necessary to take into account subsurface and underground processes, by coupling surface runoff and water infiltration into the fractured carbonates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.