Abstract
Striga asiatica (L.) Kuntze (Lamiales: Orobanchaceae), a hemi-parasitic plant native to sub-Saharan Africa and tropical Asia, is particularly problematic to rice, corn, and sorghum cultivation in Africa. Striga asiatica produces a large number of small sized (<0.5 mm) seeds, thereby facilitating easy dispersion by commercial exchange of contaminated grains. The distribution of this species in Africa is regulated by climate, which is the main factor determining local suitability. Modelling is a useful tool to analyse climate suitability for species. This study aimed to determine the areas more vulnerable to S. asiatica invasion both in the present and under the projected climate change model using two methods: MaxEnt (as a correlative approach) and CLIMEX (as a semi-mechanistic approach). The MIROC-H Global Climate Model and the A2 and RCP 8.5 scenarios (the most pessimistic one) were used. Our projections indicated areas suitable for S. asiatica invasion in all continents under both present and projected climate change, with high suitability areas in South America, Africa, and Europe. We found agreement and disagreement between CLIMEX and MaxEnt outputs and the extent of disagreement on the increases in climate suitability by 2050 and 2100 in North America, Europe, and eastern, southern, and western Australia. This study provides a useful tool to design strategies aimed at preventing the introduction and establishment of S. asiatica in South America, with considerable agreement between CLIMEX and MaxEnt outputs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.