Abstract

The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

Highlights

  • In recent years, the consensus of natural scientists on the human-induced nature of climate change has become stronger as more evidence on the issue has accumulated

  • The primary cause of climate change is attributed to the emission of greenhouse gases (GHGs) due to the burning of fossil fuels, leading to an increase in the so-called greenhouse effect that occurs as a consequence of the unbalanced presence of GHGs in the atmosphere [4]

  • We focused on the seasonal trends of potential evapotranspiration (PET), precipitation, and especially river discharge

Read more

Summary

Introduction

The consensus of natural scientists on the human-induced nature of climate change has become stronger as more evidence on the issue has accumulated. The Intergovernmental Panel on Climate Change (IPCC) has reported with what they describe as “virtual certainty” (probability >99%) that the Earth’s mean surface temperature has increased by 0.4 to 0.8∘C since the Second Industrial Revolution began around 1860 [1]. Most of this warming has occurred in two periods: from 1910 to 1945 (0.14∘C/decade) and since 1976 (0.17∘C/decade) [2]. The primary cause of climate change is attributed to the emission of greenhouse gases (GHGs) due to the burning of fossil fuels, leading to an increase in the so-called greenhouse effect that occurs as a consequence of the unbalanced presence of GHGs in the atmosphere [4]. As the global emission of GHGs, as well as other air pollutants, is increasing due to population growth, urban expansion, industrial development, and so forth, it is predicted that

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call