Abstract

Abstract. Secondary inorganic PM2.5 particles are formed from SOx (SO2+SO42-), NOx (NO+NO2), and NH3 emissions, through the formation of either ammonium sulfate ((NH4)2SO4) or ammonium nitrate (NH4NO3). EU limits and WHO guidelines for PM2.5 levels are frequently exceeded in Europe, in particular in the winter months. In addition the critical loads for eutrophication are exceeded in most of the European continent. Further reductions in NH3 emissions and other PM precursors beyond the 2030 requirements could alleviate some of the health burden from fine particles and also reduce the deposition of nitrogen to vulnerable ecosystems. Using the regional-scale EMEP/MSC-W model, we have studied the effects of year 2030 NH3 emissions on PM2.5 concentrations and depositions of nitrogen in Europe in light of present (2017), past (2005), and future (2030) conditions. Our calculations show that in Europe the formation of PM2.5 from NH3 to a large extent is limited by the ratio between the emissions of NH3 on one hand and SOx plus NOx on the other hand. As the ratio of NH3 to SOx and NOx is increasing, the potential to further curb PM2.5 levels through reductions in NH3 emissions is decreasing. Here we show that per gram of NH3 emissions mitigated, the resulting reductions in PM2.5 levels simulated using 2030 emissions are about a factor of 2.6 lower than when 2005 emissions are used. However, this ratio is lower in winter. Thus further reductions in the NH3 emissions in winter may have similar potential to SOx and NOx in curbing PM2.5 levels in this season. Following the expected reductions of NH3 emission, depositions of reduced nitrogen (NH3+NH4+) should also decrease in Europe. However, as the reductions in NOx emission are larger than for NH3, the fraction of total nitrogen (reduced plus oxidised nitrogen) deposited as reduced nitrogen is increasing and may exceed 60 % in most of Europe by 2030. Thus the potential for future reductions in the exceedances of critical loads for eutrophication in Europe will mainly rely on the ability to reduce NH3 emissions.

Highlights

  • Concentrations of particles with a diameter of less than 2.5 μm (PM2.5) have been decreasing in most of Europe since the turn of the century as a combined result of reductions in anthropogenic emissions of primary particles and gaseous PM2.5 precursors

  • Using the regional-scale EMEP/MSC-W model, we have studied the effects of year 2030 NH3 emissions on PM2.5 concentrations and depositions of nitrogen in Europe in light of present (2017), past (2005), and future (2030) conditions

  • At the same time we investigate to what extent reductions in NH3 emissions may affect deposition of reduced nitrogen and the exceedance of critical loads for nitrogen deposition

Read more

Summary

Introduction

Concentrations of particles with a diameter of less than 2.5 μm (PM2.5) have been decreasing in most of Europe since the turn of the century as a combined result of reductions in anthropogenic emissions of primary particles and gaseous PM2.5 precursors. Jonson et al.: Modelling changes in secondary inorganic aerosol formation and nitrogen deposition cess: 14 December 2021), but the projected percentage reductions in NH3 emissions in NEC2030 are smaller than for SOx and NOx. In the atmosphere SO2 is oxidised to SO24− and NOx to HNO3. With a large surplus of NH3 relative to HNO3 it could be that NH4NO3 formation will be virtually unaffected by changes in NH3 emissions. Both NOx and NH3 are relatively short-lived, with a lifetime in the atmosphere of about 1 d (Seinfeld and Pandis, 2016). At the same time we investigate to what extent reductions in NH3 emissions may affect deposition of reduced nitrogen and the exceedance of critical loads for nitrogen deposition

Model description
Model runs
Model results for 2005 versus 2030
Deposition of reduced nitrogen
28 EU countries
Effects of NH3 emission controls
Sensitivity tests with additional emission controls
Findings
Discussion and conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.