Abstract

Abstract In this current research paper, the modelling of boron diffusion during the powder-pack boronizing was achieved by utilizing two kinetics approaches: the integral method and average diffusion coefficient (ADC) method. This integral method used a general solution of algebraic differential equations (DAEs) system. The powders mixture composed of: 33.5 wt% B4C, 5.4 wt% KBF4 and 61.1 wt% SiC was employed to generate the Fe2B layers on AISI 4147 steel in the interval of 1123–1273 K for 2–8 h. The obtained surface layers have been characterized by Scanning electron microscopy (SEM) to examine the growth front with a typical saw-toothed morphology. The crystalline nature of boride phase has been verified by X-ray diffraction technique (XRD). The calculation results arising from the two models led to the similar boron activation energy in Fe2B equal to 196.19 kJ mol−1. Additionally, both models were checked out empirically by selecting three extra boronizing conditions obtained at 1273 K for increasing times (2.5, 4.5 and 8.5 h). The predicted layers’ thicknesses were found to be in line with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call