Abstract

In recent years advances in the construction of mathematical models of biological systems have yielded an array of valuable constructs. The authors seek to provide a 'leading practice' method for implementing modularised kinetic mass-action models in order to obtain a number of advantages in model construction, validation and derived insights. The authors advocate the consideration of 'accounting cycles' or 'chains' to define 'functional' components and the separate consideration of 'messenger' components for mobile or diffusive molecular species. From a conceptual modularisation the authors illustrate, with an example drawn from signal transduction, a component-based formulation in the model exchange format cellular modelling markup language (CellML) 1.1 - demonstrating loose coupling between functionally-focused reusable components. Finally, the authors discuss the dilemmas associated with modelling protein-to-protein interactions, and the vision for using future CellML enhancements to resolve potential duplications when combining independently developed models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.