Abstract
This study offers an analytical solution for radial consolidation that captures the biogeochemical clogging effect in acid sulfate soils. Field sites and personal communication with industry practitioners have provided evidence of piezometers exhibiting retarded pore pressure readings that do not follow conventional soil consolidation and seepage principles when installed in coastal acidic floodplains. This retarded response together with a variation in pH, ion concentrations, and piezometric heads provided evidence of clogging at and around the piezometers. This paper uses the proposed biogeochemical clogging model, which is an analytically derived system of equations to estimate the excess pore water pressure dissipation of piezometers installed in clogging-prone acid sulfate soils. The inclusion of the total porosity reduction attributed to biological and geochemical clogging improves the predictions of the retarded dissipation of excess pore pressure, especially after about 1 year. This method is validated for two previously identified acidic field sites in coastal Australia, where piezometers measured a very slow rate of dissipation. It is concluded that this model has potential to accurately monitor the performance of critical infrastructure, such as dams and embankment foundations built on acidic terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.