Abstract

A time-series of benthic oxygen consumption, water-column and sediment chlorophyll concentrations, and temperature in the southern North Sea was subjected to inverse modelling in order to study benthic-pelagic coupling in this coastal marine system. The application of a Markov Chain Monte Carlo (MCMC) on a simple box model allowed deriving deposition rates and temperature-dependent remineralization rates of both phytopigments and bulk carbon, as well as estimates of uncertainty for each of these processes. Together with organic matter availability, temperature had an important effect on benthic respiration rates thus delaying remineralization of spring bloom material until the late summer when temperatures were at their highest. The sediment at our station clearly acts as a buffer, removing large quantities of nutrients from the pelagic system during the spring bloom and only slowly releasing them back into the water column as temperatures increase later during summer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.