Abstract
Biomass is monitored in many agricultural studies because it is closely related to the growth of the crop. The technique of digital repeat photography that continuously capture images of a given area with an RGB or near-infrared enabled cameras, Phenocams, has been used for more than a decade mainly to estimate phenology. Studies have found a relationship between Phenocam data and above-ground dry biomass. In this context we investigate the modeling of barley fresh above and underground biomass with Green chromatic coordinate (Gcc) colour index, extracted from Phenocam data, and multi-output Gaussian processes (MOGP). We take advantage of the available very high temporal resolution data from the phenocam to predict the biomass. The MOGP models take into account the relationships among output variables learning a cross-domain kernel function able to transfer information between time series. Our results suggest that MOGP model is able to successfully predict the variables simultaneously in regions where no training samples are available by intrinsically exploiting the relationships between the considered output variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.