Abstract
Regulation of the activity and localization of PIN-FORMED (PIN) membrane proteins, which facilitate efflux of the plant hormone auxin from cells, is important for plants to respond to environmental stimuli and to develop new organs. The protein kinase PINOID (PID) is involved in regulating PIN phosphorylation, and this is thought to affect PIN localization by biasing recycling towards shootwards (apical) (rather than rootwards (basal)) membrane domains. PID has been observed to undergo transient internalization following auxin treatment, and it has been suggested that this may be a result of calcium-dependent sequestration of PID by the calcium-binding protein TOUCH3 (TCH3).We present a mathematical formulation of these processes and examine the resulting steady-state and time-dependent behaviours in response to transient increases in cytosolic calcium. We further combine this model with one for the recycling of PINs in polarized cells and also examine its behaviour. The results provide insight into the behaviour observed experimentally and provide the basis for subsequent studies of the tissue-level implications of these subcellular processes for phenomena such as gravitropism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.