Abstract

Membrane bioreactor systems are increasingly applied for municipal wastewater treatment, largely as submerged membrane units with rather low transmembrane pressure difference and feed-sided air pulsing. The combination of activated sludge units and membrane filtration for biomass retention generally results in high effluent quality and compact plant configuration. This paper proposes two permeate flux models for the filtration process in membrane bioreactor (MBR) systems. One semi-empirical model describes filtration resistance based on operational parameters and a hypothetical membrane age. The membrane age reflects performance-determining processes evolving on long time scales. The model comprises a set of model parameters which were calibrated using data from a pilot scale MBR operating with PURON submersed hollow fibre membrane modules. The second model is more empirical in nature and builds on an artificial neural network (ANN). The training procedure for the ANN was conducted based upon pilot-studies with an MBR system using a novel submerged capillary module supplied by PURON. Good correlations were found between the predicted and measured permeability using both models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.