Abstract

Simple columnar epithelia are formed by individual epithelial cells connecting together to form single cell high sheets. They are a main component of many important body tissues and are heavily involved in both normal and cancerous cell activities. Prior experimental observations have identified a series of contractile fibres around the circumference of a cross section located in the upper (apical) region of each cell. While other potential mechanisms have been identified in both the experimental and theoretical literature, these circumferential fibres are considered to be the most likely mechanism controlling movement of this cross section. Here, we investigated the impact of circumferential contractile fibres on movement of the cross section by creating an alternate model where movement is driven from circumferential contractile fibres, without any other potential mechanisms. In this model, we utilised a circumferential contractile fibre representation based on investigations into the movement of contractile fibres as an individual system, treated circumferential fibres as a series of units, and matched our model simulation to experimental geometries. By testing against laser ablation datasets sourced from existing literature, we found that circumferential fibres can reproduce the majority of cross-sectional movements. We also investigated model predictions related to various aspects of cross-sectional movement, providing insights into epithelium mechanics and demonstrating the usefulness of our modelling approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.