Abstract

This article presents the conceptual design, modelling, prototyping and testing of a novel rotary motor featuring shape memory alloy wires and overrunning clutches. The device comprises a shape memory alloy wire wound around a low-friction cylindrical drum contrasted by a backup beam spring and fitted to the output shaft through an overrunning clutch. Electrical heating produces a contraction of the wire, hence a rotation of the drum which is transferred to the shaft. Thanks to the overrunning clutch, during the recoiling phase, the drum rotates backward while the shaft does not move. Spurious backward movements of the shaft are contrasted by a second overrunning clutch linking the shaft to the frame. This article develops a model for the quasi-static simulation of the motor and the experimental characterization of a prototype device featuring three active drums, a rotary sensor and an angular brake to apply the external load. Despite the low degree of optimization, the tested motor performs well in terms of specific stroke, specific output torque and specific output work per cycle. Winding of the wire on the drum impairs somewhat the fatigue life with respect to publish data on straight wires, a drawback which calls for further design refinements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.