Abstract

Time synchronization in wireless sensor networks,aiming to provide a common sense of timing among distributed sensor nodes, is a key enabling technology for many applications, such as collaborative condition monitoring, time-of-flight localization and underwater navigation and tactical surveillance. In order to solve the challenges of the manufacturing tolerance and working condition variations in any real-world environments, a novel state-space model for pulse-coupled non-identical oscillators is proposed to model a realistic clock oscillator with nonidentical and time-varying frequency. A state feedback correction, referred to as hybrid coupling mechanism, is also proposed to ensure the system move into steady state, thus achieving time synchronization in wireless sensor networks. Furthermore, the intensive simulations of single-hop wireless sensor networks have been carried out to evaluate the performance of proposed pulsecoupled non-identical oscillators. It is shown that a partially connected wireless network consisting of 50 non-identical pulsecoupled oscillators can achieve the synchronization with the precision of $40us.$

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call