Abstract

Static and Coulomb frictions are extensively used in automotive mechanical systems to control the synchronization between two shafts or two axles. Clutches, gearboxes and limited-slip differentials are some examples. This paper proposes a method for the efficient simulation of a wide class of automotive mechanical systems with static and Coulomb friction phenomena. The modelling approach is based on the port-Hamiltonian representation of the dynamic systems and the computation of the friction forces requires only the zero crossing detection. A slight approximation allows faster and sufficiently accurate simulations even without an accurate zero crossing detection. The proposed approach has been used to simulate the behaviour of a complex gearbox provided by some high level farm tractors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.