Abstract

Solar technologies like flat plate solar collectors are being widely used for low-grade thermal energy for household purposes. These days, photovoltaic thermal (PV/T) collectors are also gaining momentum as source of combined heat and electric power. Commonly used base fluid in PV/T collector is water which have low thermal conductance, and thus, addition of nanoparticles in base fluid will lead to the enhancement in overall thermal conductance. Keeping this as main focus, a research has been carried out to evaluate the performance of PV/T system with different nanoparticles. For that, the simulation was carried out by performing grid test and then simulated on ANSYS to obtain results. For the same, nanofluids with 20 nm particle dimensions and 299 K inlet temperature were loaded with 0.5, 1 and 1.5% particle volume fraction with different Reynolds numbers varying from 250 to 1500. The simulated model was validated with the literature, and obtained results showed that the heat transfer coefficient (HTC) without any nanoparticles ranges from 245.5 to 519.8 W/m2 K for Reynolds number of 250–1500, respectively. On other hand, with nanoparticles, the HTC increases and ranges between 250.6–529.20 W/m2 K, 255.42–539.8 W/m2 K and 261.1–550.8 W/m2 K for 0.5%, 1.0% and 1.5% volume fraction, respectively, for Reynolds number of 250–1500. In the end, it is concluded that the simulation results are in good agreement with the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.