Abstract

In this work, we propose a visual, custom-designed, event-driven interconnect simulation framework to evaluate the performance of off-chip multi-processor/memory communications architectures for line cards. The simulator uses the state-of-the-art software design techniques to provide the user with a flexible, robust and comprehensive tool that can evaluate k-ary n-cube based network topologies under non-uniform traffic patterns. The simulator provides full control over essential network parameters and flow control mechanisms such as virtual channels and sub-channeling. We compare three low-dimensional k-ary n-cube based interconnects that can fit into the physical limitations on line cards, where each one of these interconnects has multiple processor-memory configurations. Performance results show that k-ary n-cube architectures perform better than existing interconnects, and they can sustain current line rates and higher. In addition, we provide performance tradeoffs between multiple flow control mechanisms and performance metrics such as throughput, routing accuracy, failure rate and interconnect utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.