Abstract
This paper presents a numerical scheme for computing moving contact line flows with wetting effects. The numerical scheme is based on Arbitrary Lagrangian Eulerian (ALE) finite elements on moving meshes. In the computations, the wetting effects are taken into account through a weak enforcement of the prescribed equilibrium contact angle into the model equations. The equilibrium contact angle is included in the variational form of the model by replacing the curvature with Laplace Beltrami operator and integration by parts. This weak implementation allows that the contact angle determined by the numerical scheme differs from the equilibrium value and develops a certain dynamics. The Laplace Beltrami operator technique with an interface/boundary resolved mesh is well-suited for describing the dynamic contact angle observed in experiments. We consider the spreading and the pendant liquid droplets to investigate this implementation of the contact angle. It is shown that the dynamic contact angle tends to the prescribed equilibrium contact angle when time goes to infinity. However, the dynamics of the contact angle is influenced by the slip at the moving contact line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.