Abstract

Unlike liquid phase colloidal assembly, significantly changing the structure of fractal aggregates in the aerosol phase, is considered impractical. In this study, we discuss the possibility of applying external magnetic and electric fields, to tune the structure and fractal dimension (Df) of aggregates grown in the aerosol phase. We show that external fields can be used to induce dipole moments in primary nanoparticles. We found that an ensemble of particles with induced dipole moments will interact through directional attractive and repulsive forces, leading to the formation of linear, chain-like aggregates with Df ~ 1. The aggregate structure transition is dependent on the primary particle sizes, temperature and applied field strength which was evaluated by performing a hybrid ensemble/cluster-cluster aggregation Monte Carlo simulation. We demonstrate that the threshold magnetic field strength required to linearly assemble 10–500 nm particle sizes are practically achievable whereas the electric field required to assemble sub-100 nm particles are beyond the breakdown strength of most gases. To theoretically account for the enhanced coagulation rates due to attractive interactions, we have also derived a correction factor to both free molecular and transition regime coagulation kernel, based on magnetic dipolar interactions. A comparison has been made between the coagulation time-scales estimated by theory and simulation, with the estimated magnetization time-scales of the primary particles along with oscillation time period of the magnetic field, to demonstrate that sub-50 nm superparamagnetic primary particles can be magnetized and assembled at any temperature, while below the Curie temperature ferromagnetic particles of all sizes can be magnetized and assembled, given the applied field is higher than the threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.