Abstract

Concrete is a composite material composed of water, sand, coarse granular material called aggregate and cement that fills the space among the aggregate particles and glues them together. Conventional building structures are made up of steel skeleton with concrete impregnation. These are very heavy weight structures with steel vulnerable to corrosion. The conventional concrete structures tend to undergo large deformations in the event of a strong earthquake. Mechanical simulation of various textile structural concretes is carried out successfully for their ductility behaviour. 3D woven reinforced concretes display superior ductile character showing ray of hope to develop seismic resistant building. Simulation of three 3D woven fabrics and their composites was carried to predict ductility and strengths of fabric reinforced concrete structures. Maximum deformation was observed for beam reinforced with orthogonal interlock fabric under the same load and minimum deformation was observed for plain concrete. Maximum equivalent stress was observed to be highest for plain concrete followed by beam reinforced with angle interlock fabric followed by orthogonal fabric and warp interlock fabric under similar loading conditions. From the results it was clear that 3D fabric reinforced structures are more ductile than the traditional steel reinforced structures. Hence 3D fabric reinforced concrete structures are much better in strength and ductility as compared to conventional construction materials. Among the three 3D fabric, orthogonal fabric reinforced composites are most ductile and are also less stiff. They can deform more than the other two fabric composites. Hence, orthogonal fabric reinforced composites can undergo higher deformations without collapsing. These composites can be more elastic under earthquake shaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call