Abstract

Graphene and silicon are two prominent lithium-ion battery anode materials that have recently received a lot of attention. In this paper we have modelled and simulated the charge transport phenomena in Graphene on Si / SiO2 and SrTiO3 substrates. The Graphene monolayer's interface with the SrTiO3 (111) surface is analyzed using ab initio density-functional measurements. Both charge and heat flows are produced in solids, at the same time when an electrochemical potential is available, bringing about novel properties. The band structure and the electron dissolution process decide the Seebeck coefficient and electrical conductivity. It has been discovered that the interaction of Graphene with SiTiO3 accommodates electronic properties, Seebeck coefficient, and electronic conductivity. For the Graphene / SrTiO3 interface, the best values for the Seebeck coefficient were calculated. All the findings of this work suggest that the Graphene-SrTiO3 (111) and Graphene-Si structure could exhibit interesting quantum transport behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.