Abstract

Nowadays Twitter is one of most popular social communication network on the web. Because of that it is very important to try to understand the phenomena of propagation of opinions that take place in these media. A theoretical tool that allows the analysis of phenomena in networks is the theory of graphs. So if we model a social network by means of a graph we can make use of the solid theoretical concepts of graph theory to try to explain phenomena such as the polarization of opinions in social networks. Graph theory concepts as for instance centrality can be used to identify users, modelled as nodes of a graph, that have more influence or popularity in a social network. That can be used to classify users. Another useful graph parameter is the connectedness that enable to know how robust is a given network topology. In this article we will be interested in studying the impact of the topological structure of a network as well as the conditions of probability of contagion and recovery of the nodes that allow the polarization of an opinion or on the contrary the extinction of this one. Given that the calculation of exact values of the fast extinction threshold are hard to obtain even for very simple versions of the problem, it is a good idea to apply simulation to get a clue about the parameter values of the system that make the information survive or get extincted in a network. For this end, based on a virus propagation mathematical model, we are going to simulate the opinion propagation using a multi-agent testbed known as Netlogo and implement a opinion propagation mathematical model under a dynamical system approach using the MATLAB programming language.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call