Abstract

Site-specific radiation damage on anomalously scattering sites can be used to generate additional phase information in standard single- or multi-wavelength anomalous diffraction (SAD or MAD) experiments. In this approach the data are kept unmerged, down to the Harker construction, and the evolution of site-specific radiation damage as a function of X-ray irradiation is explicitly modelled and refined in real space. Phasing power is generated through the intensity differences of symmetry-related reflections or repeated measurements of the same reflection recorded at different X-ray doses. In the present communication the fundamentals of this approach are reviewed and different models for the description of site-specific radiation damage are presented. It is shown that, in more difficult situations, overall radiation damage may unfold on a time scale that is similar to the evolution of site-specific radiation damage or to the total time that is required to record a complete data set. In such cases the quality of the phases will ultimately be limited by the effects of overall radiation damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.