Abstract

Current and future astronomical detectors based on Transition Edge Sensors (TESs) need to achieve theoretically predicted current noise performance determined by the sum of contributions from thermal noise in the link to the heat bath, Johnson noise in the sensor itself and noise in the electrical readout circuit. Present TES geometries can have noise levels significantly above this limit. Our Mo/Cu bilayer TESs are fabricated on long, narrow, thermally isolating silicon nitride structures and are designed for operation at 360 or 200 mK. We briefly review the likely sources of the additional noise sources in this geometry and show results of measurements and modelling of the noise sources as the TES geometry is modified for TESs operated at both temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call