Abstract

Microwave heating (MWH) has been recently proposed as a high-performance technique for the remediation of soils contaminated with organic pollutants. However, despite MWH potential advantages, it is scarcely applied due to the lack of full-scale in situ detailed studies. In this work, the in situ MWH applicability for the remediation of hydrocarbon-polluted soils was assessed by means of a specific energy and economic analysis. Essential technical information has also been purchased. Energy and economic analysis was performed using data obtained from modelling for which a dedicated equation-based process computer code simulating MWH phenomena was adopted. Elaborations involved the assessment of the influence of soil texture and moisture as well as operating conditions (supplied power and time) on electric field penetration into the soils and soil temperature variation as a function of time and radial distance from the irradiation source. Main results reveal that sandy soils are more penetrable by MW irradiation with respect to clayey ones. The soil MW penetrability was also observed to increase with decreasing the soil moisture. This was in turn reflected in the soil temperature profiles. However, the major effect on MWH effectiveness is ascribable by the changing of the operating power. In fact, the use of magnetrons with powers lower than 3 kW does not ensure enough microwave penetration into the soil and, therefore, is not suitable for in situ activities, whereas the application of a power of 6 kW led to a maximum treatable radius of 145 cm. In terms of energy consumption, calculation showed that almost 3 days more are in general required to remediate clayey soils with respect to sandy ones. Consequently, the economic analysis revealed that energy costs for sandy soils are about 3 € t−1 lower than those required for clayey soils. Furthermore, the application of a power of 6 instead of 3 kW results in a higher total energy cost, which, jointly with the higher soil volume treatable, leads to almost equal specific costs. The comparison of calculated costs with those of other available clean-up technologies for hydrocarbon-contaminated soils shows that very short remediation times and energy costs obtained (18–27 € t−1) make in situ MWH a deliverable alternative to conventional thermal desorption or physical-chemical techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.