Abstract
PurposeThe purpose of the study is to establish a predictive model for sustainable wire electrical discharge machining (WEDM) by using adaptive neuro fuzzy interface system (ANFIS). Machining was done on Titanium grade 2 alloy, which is also nicknamed as workhorse of commercially pure titanium industry. ANFIS, being a state-of-the-art technology, is a highly sophisticated and reliable technique used for the prediction and decision-making.Design/methodology/approachKeeping in the mind the complex nature of WEDM along with the goal of sustainable manufacturing process, ANFIS was chosen to construct predictive models for the material removal rate (MRR) and power consumption (Pc), which reflect environmental and economic aspects. The machining parameters chosen for the machining process are pulse on-time, wire feed, wire tension, servo voltage, servo feed and peak current.FindingsThe ANFIS predicted values were verified experimentally, which gave a root mean squared error (RMSE) of 0.329 for MRR and 0.805 for Pc. The significantly low RMSE verifies the accuracy of the process.Originality/valueANFIS has been there for quite a time, but it has not been used yet for its possible application in the field of sustainable WEDM of titanium grade-2 alloy with emphasis on MRR and Pc. The novelty of the work is that a predictive model for sustainable machining of titanium grade-2 alloy has been successfully developed using ANFIS, thereby showing the reliability of this technique for the development of predictive models and decision-making for sustainable manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.