Abstract
Multi-layer feed-forward neural networks trained with an error back-propagation algorithm have been used to model retention behaviour of liquid chromatography as a function of the composition of the mobile phases. Conventional hydro-organic and micellar mobile phases were considered. Accurate retention modelling and prediction have been achieved using mobile phases defined by two, three and four parameters. With micellar mobile phases, the parameters involved included the concentrations of surfactant and organic modifier, pH and temperature. It is shown that neural networks provide a competitive tool to model varied inherent nonlinear relationships of retention behaviour with respect to the mobile phase parameters. The soft models defined by the weights of the networks are capable of accommodating all types of linear and nonlinear relationships, neural networks being specially useful when the relationships between retention behaviour and the mobile phase parameters are unknown. However, to train neural networks more experimental points than with hard-modelling methods are required, hence the use of the networks is recommended only for those cases where adequate theoretical or empirical models do not exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.