Abstract
This study aims to build a dynamic model of a direct steam generation (DSG) solar power system coupled with a steam accumulator to meet electricity demands for a hospital under transient environmental conditions in Libya. The main components of the system are DSG parabolic trough collectors, a steam accumulator, a turbine, a condenser and a circulation pump. The system is modelled via using Simulink\\Simscape software blocks with integrated MATLAB functions to run a dynamic simulation. As the simulation tool reflects the transient operation of the components, advanced control strategies were applied to the model. Using the proportional integral controller (PI controller), safe operation of the system is secured by pump flow rate control, safe turbine operation is provided by pressure control and power output is matched with the demand by using a throttle valve control. 1584 m2 solar collector area and 160 m3 total volume of pressurized steam tank are used in the simulation considering the electricity demand of the hospital and solar radiation in the location. The produced work output was controlled to match the demand profile of the hospital, which needs 200 kW in the peak period and 50 kW at the night. The designed system shows a maximum thermal efficiency of 23.5% for the operation condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.