Abstract

Titanium alloy (Ti6Al4V) possesses excellent mechanical properties, but its machinability at high temperature and speed often lead to vibration and subsequently chatter during machining operations. In this work, the modelling and optimization of the cutting parameters for the milling operations of titanium alloy Ti6Al4V was carried out. The numerical experiment was conducted using the Response Surface Methodology (RSM). The process parameters considered include; the maximum chip thickness (0.1-0.2 mm), cutting speed (29000-34000 mm/min) and feed per tooth (0.14 - 0.28 mm). These process parameters were varied over different levels. The physical experiment was conducted on a DMU80monoBLOCK Deckel Maho 5-axis CNC milling with the stationary dynamometer (KISTLER 9257A 8-Channel Summation of Type 5001A Multichannel Amplifier) mounted directly to the machine table with the titanium alloy screwed to it. The response of the experiment; cutting force for each of the experimental trial was collected through the Data Acquisition System (DAS) of the Kistler Dynamometer. The results obtained indicate significant model terms which implies that the developed model is suitable for predictive purpose and that the process parameters can significantly influence the magnitude of the cutting forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call