Abstract

Within U-shaped assembly lines, the increase of labour costs and subsequent utilisation of robots has led to growing energy consumption, which is the current main expense of auto and electronics industries. However, there are limited researches concerning both energy consumption reduction and productivity improvement on U-shaped robotic assembly lines. This paper first develops a nonlinear multi-objective mixed-integer programming model, reformulates it into a linear form by linearising the multiplication of two binary variables, and then refines the weight of multiple objectives so as to achieve a better approximation of true Pareto frontiers. In addition, Pareto artificial bee colony algorithm (PABC) is extended to tackle this new complex problem. This algorithm stores all the non-dominated solutions into a permanent archive set to keep all the good genes, and selects one solution from this set to overcome the strong local minima. Comparative experiments based on a set of newly generated benchmarks verify the superiority of the proposed PABC over four multi-objective algorithms in terms of generation distance, maximum spread, hypervolume ratio and the ratio of non-dominated solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.