Abstract
This study examined the modelling and optimisation of the electrocoagulation-flocculation (ECF) recovery of aquaculture effluent (AQE) using aluminium electrodes. The response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) were used for the modelling, while the optimisation tools were the numerical RSM and genetic algorithm (GA). Furthermore, the kinetics of the ECF process was studied to provide insight into the mechanism governing the ECF of AQE. The experimental design was performed using the central composite design (CCD) of the RSM. The ANFIS modelling was accomplished via the Grid Partition (GP) of the data set, while the ANN used the multi-layer perceptron (MLP) based feed-forward system. Statistically, the prediction accuracy of the models followed the order: ANFIS (R2: 0.9990), ANN (R2: 0.9807), and RSM (R2: 0.9790). The process optimisation gave optimal turbidity (TD) removal efficiencies of 98.98, 97.81, and 96.01% for ANFIS-GA, ANN-GA, and RSM optimisation techniques, respectively. The ANFIS-GA gave the best optimization result at optimum conditions of pH 4, current intensity (3 A), electrolysis time (7.2min), settling time (23min), and temperature (43.8°C). In the kinetics study, the experimental data was analysed using pseudo-first-order (0.8787), pseudo-second-order (0.9395), and Elovich (R2: 0.9979) kinetic models; the Elovich model gave the best correlation with the experimental data showing that the process is governed by electrostatic interaction mechanism. This study effectively demonstrated that ECF recovery of AQE can effectively be modelled using RSM, ANN, and ANFIS and be optimised using RSM, ANN-GA, and ANFIS-GA techniques, and the order of performance is ANFIS > ANN > RSM and ANFIS-GA > ANN-GA > RSM, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.