Abstract
Air-conditioning and refrigeration systems are extensively adopted in homes, industry and vehicles. An important step in achieving a better performance and a higher energy efficiency for air-conditioning and refrigeration systems is a control-based model and a suitable control strategy. As a result, a dynamic model based on the moving-boundary and lumped-parameter method is developed in this paper. Unlike existing models, the proposed model lumps the effects of the fins into two equivalent parameters without adding any complexity and considers the effect produced by the superheated section of the condenser, resulting in a model that is not only simpler but also more accurate than the existing models. In addition, a model predictive controller is designed on the basis of the proposed model to enhance the energy efficiency of the air-conditioning and refrigeration systems. Simulations and experimental results are presented to demonstrate the accuracy of the model. The experiments show that an energy saving of about 8% can be achieved by using the proposed model predictive controller compared with the conventional on–off controller under the examined scenario. The better performance of the proposed controller requires electrification of the automotive air-conditioning and refrigeration systems so as to eliminate the idling caused by running the air-conditioning and refrigeration systems when a vehicle stops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.