Abstract

A continuous indirect electro-oxidation (EO) process was developed using graphite electrode to investigate the treatability of reactive turquoise blue RTB21 dye wastewater under specific operating conditions of initial pH, current density, hydraulic retention time (HRT), and electrolyte (NaCl) concentration. The experiments were performed in accordance with the central composite design (CCD), and the findings were used to create a model utilizing artificial neural networks (ANNs). According to the predicted findings of the ANN model, the MSE values for colour and COD removal efficiencies were estimated to be 0.748 and 0.870, respectively, while the R2 values were 0.9999 and 0.9998, respectively. The Multi-objective optimization using genetic algorithm (MOGA) over the ANN model maximizes the multiple responses: colour and COD removal efficiency (%). The MOGA generates a non-dominated Pareto front, which provides an insight into the process's optimum operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.