Abstract

Laser-based additive manufacturing (LBAM) is a promising manufacturing technology that can be widely applied in solid freeform fabrication (SFF), component recovery and regeneration, and surface modification. The thermal behaviour of the molten pool is one of the critical factors that influences laser deposition indices such as geometrical accuracy, material properties and residual stresses. In this paper, a three-dimensional finite element model is developed using ANSYS to simulate the thermal behaviour of the molten pool in building a single-bead wall via a closed-loop controlled LBAM process in which the laser power is controlled to keep the width of the molten pool constant. The temperature distribution, the geometrical feature of the molten pool and the cooling rate under different process conditions are investigated. To verify the simulation results, the thermal behaviour of the molten pool is measured by a coaxially installed infrared camera in experimental investigations of a closed-loop controlled LBAM process. Results from finite element thermal analysis provide guidance for the process parameter selection in LBAM, and develop a base for further residual stress analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call