Abstract

This paper employs a semiparametric procedure to estimate the diffusion process of short-term interest rates. The Monte Carlo study shows that the semiparametric approach produces more accurate volatility estimates than models that accommodate asymmetry, level effect and serial dependence in the conditional variance. Moreover, the semiparametric approach yields robust volatility estimates even if the short rate drift function and the underlying innovation distribution are misspecified. Empirical investigation with the U.S. three-month Treasury bill rates suggests that the semiparametric procedure produces superior in-sample and out-of-sample forecast of short rate changes volatility compared with the widely used single-factor diffusion models. This forecast improvement has implications for pricing interest rate derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.