Abstract
AbstractThe Standard Generalised Autoregressive Conditionally Heteroskedastic (sGARCH) model and the Functional Generalised Autoregressive Conditionally Heteroskedastic (fGARCH) model were applied to study the volatility of the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which is the primary objective of this study. The other goal of this paper is to expand on the researchers’ previous work by examining long memory and volatilities simultaneously, by using the ARFIMA-sGARCH hybrid model and comparing it against the ARFIMA-fGARCH hybrid model. Consequently, the hybrid models were configured with the monthly Brent crude oil price series for the period from January 1979 to July 2019. These datasets were considered as the global economy is currently facing significant challenges resulting from noticeable volatilities, especially in terms of the Brent crude prices, due to the outbreak of COVID-19. To achieve these goals, an R/S analysis was performed and the aggregated variance and the Higuchi methods were applied to test for the presence of long memory in the dataset. Furthermore, four breaks have been detected: in 1986, 1999, 2005, and 2013 using the Bayes information criterion. In the further section of the paper, the Hurst Exponent and Geweke-Porter-Hudak (GPH) methods were used to estimate the values of fractional differences. Thus, some ARFIMA models were identified using AIC (Akaike Information Criterion), BIC (Schwartz Bayesian Information Criterion), AICc (corrected AIC), and the RMSE (Root Mean Squared Error). In result, the following conclusions were reached: the ARFIMA(2,0.3589648,2)-sGARCH(1,1) model and the ARFIMA(2,0.3589648,2)-fGARCH(1,1) model under normal distribution proved to be the best models, demonstrating the smallest values for these criteria. The calculations conducted herein show that the two models are of the same accuracy level in terms of the RMSE value, which equals 0.08808882, and it is this result that distinguishes our study. In conclusion, these models can be used to predict oil prices more accurately than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.