Abstract

This study examined the impact of mechanical oscillation on a hydraulic directional control valve. Particular attention was paid to the oscillating movement of the spool of the hydraulic directional control valve resulting from this impact. Different models of fluid and mixed friction were considered. The models analysed accounted for the relative movement of the directional control valve body and the fact that it is kinematically excited by external mechanical oscillations. It was observed that the mixed friction model, where the frictional force is considered to be the sum of molecular forces acting in micro-areas of contact and drag forces in the fluid, was the best for describing the movement of the spool for a specific spool oscillation frequency. This model yielded significantly more consistency between the simulated and experimental results than the classic fluid friction model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.