Abstract

MultiObjective (MO) optimization has a very wide range of successful applications in engineering and economics. Such applications can be found in optimal control systems (Liu et al., 2007), and communication (Elmusrati et al., 2007). The MO optimization can be applied to find the optimal solution which is a compromise between multiple and contradicting objectives. In MO optimization we are more interested in the Pareto optimal set which contains all noninferior solutions. The decision maker can then select the most preferred solution out of the Pareto optimal set. The weighted sum method to handle MO optimization applied in this paper. Furthermore, the weighted sum is simple and straightforward method to handle MO optimization problems. The need for more flexible electric systems to cope with changing regulatory and economic scenarios, energy savings and environmental impact is providing impetus to the development of MicroGrids (MG), which are predicted to play an increasing role of the future power systems (Hernandez-Aramburo et al., 2005). One of the important applications of the MG units is the utilization of small-modular residential or commercial units for onsite service. The MG units can be chosen so that they satisfy the customer load demand at compromise cost and emissions all the time. Solving the environmental economic problem in the power generation has received considerable attention. An excellent overview on commonly used environmental economic algorithms can be found in (Talaq et al., 1994). The environmental economic problems have been effectively solved by multiobjective evolutionary in (Abido, 2003) and fuzzy satisfaction-maximizing approach (Huang et al., 1997). Several strategies have been reported in the literature related to the operation costs as well as minimizing emissions of MG. In (Hernandez-Aramburo et al., 2005) the optimization is aimed at reducing the fuel consumption rate of the system while constraining it to fulfil the local energy demand (both electrical and thermal) and provide a certain minimum reserve

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.