Abstract

Modern radio communication services transmit signals from an earth station to a high-altitude station, space station or a space radio system via a feeder link while in Global Systems for Mobile Communication (GSM) and computer networks, the radio uplink transmit from cell phones to base station linking the network core to the communication interphase via an upstream facility. Hitherto, the Single-Carrier Frequency Division Multiple Access (SC-FDMA) has been adopted for uplink access in the Long-Term Evolution (LTE) scheme by the 3GPP. In this journal, the LTE uplink radio resource allocation is addressed as an optimization problem, where the desired solution is the mapping of the schedulable UE to schedulable Resource Blocks (RBs) that maximizes the proportional fairness metric. The particle swarm optimization (PSO) has been employed for this research. PSO is an algorithm that is very easy to implement to solve real time optimization problems and has fewer parameters to adjust when compared to other evolutionary algorithms. The proposed scheme was found to outperform the First Maximum Expansion (FME) and Recursive Maximum Expansion (RME) in terms of simulation time and fairness while maintaining the throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.