Abstract

Abstract A hard chromium electroplating process is normally used for preventing mechanical and electrical parts such as roller, piston and mold from the harmful environments and giving the good physical properties on the surface such as increased wear resistance, increased hardness, low frictional coefficient as well as good aesthetic look on the surface of workpieces. The problem that often found in this process is the deflected workpieces after plating process due to the low plating performance during a plating period. These deflected workpieces are needed to replating it again. However, the replating method causes a large amount of resource consumptions and increases the production time. To handle this problem, the plating solution temperature is needed to maintain the plating solution temperature at a set point about 50 °C in order to improve the plating performance during the plating period and decrease the occurrence of the deflected workpieces. In this work, the mathematical models are developed to explain the dynamic behavior of the plating solution temperature during the plating time and validated with the real data from a plant. The conventional (PID) controller is applied to this process for the purpose of keeping the plating solution temperature at the set point throughout the plating time. The result demonstrates that the developed mathematical models can be used to explain the dynamic behavior of the plating solution temperature because it gives the good simulation of the plating solution temperature with a slightly different from the real data. Furthermore, the PID controller shows the high control performance for maintaining the plating solution temperature at the set point throughout the plating period with small overshoot at the beginning of every batch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.