Abstract

Many real-world processes tend to be chaotic and are not amenable to satisfactory analytical models. It has been shown here that for such chaotic processes represented through short chaotic noisy observed data, a multi-input and multi-output recurrent neural network can be built which is capable of capturing the process trends and predicting the behaviour for any given starting condition. It is further shown that this capability can be achieved by the recurrent neural network model when it is trained to very low value of mean squared error. Such a model can then be used for constructing the bifurcation diagram of the process leading to determination of desirable operating conditions. Further, this multi-input and multi-output model makes the process accessible for control using open-loop/closed-loop approaches or bifurcation control, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.