Abstract
ABSTRACT A spherical pendulum is a 2 degree-of-freedom mechanism consisting on a rod whose tip moves on the surface of a sphere. It is common to use two angular coordinates to describe such a system. This paper proposes the use of a non-minimal set of coordinates for modelling and controlling a fully-actuated torque-driven spherical pendulum. These coordinates is merely for the purpose of showing the application of unit quaternions as a useful tool for dealing with the orientation of rigid bodies. First, we recall the properties of unit quaternions, and explain how they can be employed for the definition of such non-minimal pendulum coordinates. Later, the control objective for orientation regulation is established and an inverse-dynamics controller, which uses joint displacement and velocity measurements but also some non-minimal states for the orientation error, is proposed. The stability analysis shows the fulfilment of the control objective and is validated through simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical and Computer Modelling of Dynamical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.