Abstract

Unsteady turbulent cavitation flows in a Venturi-type section and around a NACA0012 hydrofoil were simulated by two-dimensional computations of viscous compressible turbulent flow model. The Venturi-type section flow proved numerical precision and reliability of the physical model and the code, and further the cavitation around NACA0012 foil was investigated. These flows were calculated with a code of SIMPLE-type finite volume scheme, associated with a barotropic vapor/liquid state law which strongly links density and pressure variation. To simulate turbulent flows, modified RNG k − ɛ model was used. Numerical results obtained in the Venturi-type flow simulated periodic shedding of sheet cavity and was compared with experiment data, and the results of the NACA0012 foil show quasi-periodic vortex cavitation phenomenon. Results obtained concerning cavity shape and unsteady behavior, void ratio, and velocity field were found in good agreement with experiment ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call