Abstract

There is an emerging class of microfluidic bioreactors which possess long-term, closed circuit perfusion under sterile conditions with in vivo-like flow parameters. Integrated into microfluidics, peristaltic-like pneumatically actuated displacement micropumps are able to meet these requirements. We present both a theoretical and experimental characterization of such pumps. In order to examine volume flow rate, we have developed a mathemati- cal model describing membrane motion under external pressure. The viscoelasticity of the membrane and hydrodynamic resistance of the microfluidic channel have been taken into account. Unlike other models, the developed model includes only the physical parameters of the pump and allows the estimation of their impact on the resulting flow. The model has been validated experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.