Abstract

To satisfy the urgent requirements of security for fifth generation (5G) fronthaul network, quantum key distribution (QKD) technique is taken into consideration as a promising way. In this paper, we first propose an architecture for quantum security beyond fifth generation (B5G) fronthaul optical network, which merges facilities of QKD into the architecture of existing 5G fronthaul network, enabling quantum signals to be transmitted with classical signals within the same fiber. Secondly, theoretical model analysis of interference with quantum signals caused by four wave mixing noise is performed. Moreover, the theory of secure key rate calculation under noise interference is introduced. Lastly, the QKD performance in the proposed architecture is evaluated, which leads to the conclusion that even when the quantity of B5G fronthaul optical channels for classical signals reaches up to 12, the secure transmission distance of QKD is still beyond 20km, which satisfies the demand of B5G fronthaul optical network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.